DNA-Free Genetically Edited Grapevine and Apple Protoplast Using CRISPR/Cas9 Ribonucleoproteins
نویسندگان
چکیده
The combined availability of whole genome sequences and genome editing tools is set to revolutionize the field of fruit biotechnology by enabling the introduction of targeted genetic changes with unprecedented control and accuracy, both to explore emergent phenotypes and to introduce new functionalities. Although plasmid-mediated delivery of genome editing components to plant cells is very efficient, it also presents some drawbacks, such as possible random integration of plasmid sequences in the host genome. Additionally, it may well be intercepted by current process-based GMO regulations, complicating the path to commercialization of improved varieties. Here, we explore direct delivery of purified CRISPR/Cas9 ribonucleoproteins (RNPs) to the protoplast of grape cultivar Chardonnay and apple cultivar such as Golden delicious fruit crop plants for efficient targeted mutagenesis. We targeted MLO-7, a susceptible gene in order to increase resistance to powdery mildew in grape cultivar and DIPM-1, DIPM-2, and DIPM-4 in the apple to increase resistance to fire blight disease. Furthermore, efficient protoplast transformation, the molar ratio of Cas9 and sgRNAs were optimized for each grape and apple cultivar. The targeted mutagenesis insertion and deletion rate was analyzed using targeted deep sequencing. Our results demonstrate that direct delivery of CRISPR/Cas9 RNPs to the protoplast system enables targeted gene editing and paves the way to the generation of DNA-free genome edited grapevine and apple plants.
منابع مشابه
Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes
Substantial efforts are being made to optimize the CRISPR/Cas9 system for precision crop breeding. The avoidance of transgene integration and reduction of off-target mutations are the most important targets for optimization. Here, we describe an efficient genome editing method for bread wheat using CRISPR/Cas9 ribonucleoproteins (RNPs). Starting from RNP preparation, the whole protocol takes on...
متن کاملGenome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes
Targeted DNA double-strand breaks have been shown to significantly increase the frequency and precision of genome editing. In the past two decades, several double-strand break technologies have been developed. CRISPR-Cas9 has quickly become the technology of choice for genome editing due to its simplicity, efficiency and versatility. Currently, genome editing in plants primarily relies on deliv...
متن کاملفناوری ویرایش ژن کریسپر ـ کَس 9 از منظر حقوق مالکیت فکری و ایمنی زیستی
In recent years, inexpensive and fruitful gene editing techniques such as CRISPR-Cas9 and NaAgo have revolutionized the biotechnology industry. Genetically edited organisms, gene therapy, treatment of diseases such as AIDS and editing human cells are some of the marvelous applications of such technologies. Using such technologies in large scale or granting exclusive rights on their products or ...
متن کاملOptimization of DNA, RNA and RNP Delivery for Efficient Mammalian Cell Engineering Optimization of DNA, RNA and RNP Delivery for Efficient Mammalian Cell Engineering using CRISPR/Cas9
The CRISPR/Cas9 genome-editing platform is a versatile and powerful technology to efficiently create genetically engineered living cells and organisms. This system requires a complex of Cas9 endonuclease protein with a gene-targeting guide RNA (gRNA) to introduce double-strand DNA breaks (DSBs) at specific locations in the genome. The cell then repairs the resulting DSBs using either homology-d...
متن کاملDNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins
Microalgae are versatile organisms capable of converting CO2, H2O, and sunlight into fuel and chemicals for domestic and industrial consumption. Thus, genetic modifications of microalgae for enhancing photosynthetic productivity, and biomass and bio-products generation are crucial for both academic and industrial applications. However, targeted mutagenesis in microalgae with CRISPR-Cas9 is limi...
متن کامل